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A methe~ is described for simulating tissue temperature in cryosurgery by nu- 
merical solution of a heat-conduction problem with a mobile phase interface. 
The results are compared with experiment. 

Information can be obtained on the probability of cell death in a given tissue volume 
in cryosurgery by reference to the temperatur e distribution, the cooling rate, and the 
growth rate of the frozen zone [I-3]. Input data in the design of cryosurgery systems are 
provided by the temperature and characteristic dimension of the working tip, since these 
largely control the above characteristics. Also, it is necessary to know the heat flux from 
the tissue. These characteristics can be determined by physical or mathematical simulation, 
which is inte~ed to forecast the results of cryosurgery and to provide design data for in- 
struments and for the cryogenic support. 

One of the traditional ways of simulating thermal conditions in cryosurgery is to solve 
the heat-conduction problem for a two-phase system with a mobile boundary between the frozen 
and unfrozen parts. Factors peculiar to biological objects have to be incorporated, such 
as the heat S b supplied by the blood flow and the metabolic heat production Sm [4]. A major 
condition for obtaining reliable information in such simulation is adequate accuracy in the 
numerous input: data: p, c, %, p', c', %', mb, Cb, Sm, l; however, such data as yet have not 
been properly classified, and there are many discrepancies even in qualitative features of 
the published data. For instance, in [I] we find references to [5,6] concerning the assump- 
tion that the blood flow rate m b is constant. On the other hand, in the calculations of [7] 
we find that S~ and Sb are taken as dependent on temperature [8], and it has also been shown 
[7] that neglect of this factor can result in up to 20% error in the result for the radius 
of the frozen zone. Also, the values of Sm and Sb may be influenced by the response of the 
organism, but the data are taken from experiments [6, 8] that do not reflect the specific 
features of local cryosurgery. As a consequence, the results of [2, 7],which were derived 
by numerical solution of the Stefan's problem [9] for a biological system, are to be viewed 
as qualitative and cannot be used with confidence in forecasting, or even as input data in 
the design of cryosurgery instruments. A preliminary analysis indicates that this is parti- 
cularly important in the determination of heat fluxes to instruments at the start of opera- 
tion, when the fluxes are largest, since these fluxes must be the ones for which the instru- 
ments are designed to operate. 

Any quantitative characterization of freezing requires a formulation in which the input 
data are of minimal volume and reflect a single integral characteristic of the living tissue, 
since there are very severe experimental difficulties in determining numerous quantities. An 
appropriate integral factor is the law followed by the boundary of the frozen zone, as this 
is fairly easy to establish in some cases of practical importance [10], particularly with 
regard to appropriate accuracy in the measurements. The heat-conduction problem for a 
two-phase biologic~l system [7] then splits up into two subsystems of equations, each rela- 
ting to one phase only. 

An advantage of this approach tO local cryosurgery is that the simulation need be con- 
ducted only for the frozen zone, because the necrotic zone is usually smaller than the latter 
[3]. This means that the number of input quantities is reduced from 10 to 4 (p, c, X, R(t)), 
and therefore there is a reduction in the overall error introduced by the error in the input 
data. That is, use of measured R(t) for the boundary conditions enables one to test the 
assumption that the temperature distribution is quasistationary, particularly as this may be 
derived by approximate analytical solution [II]. 

Another advantage of the formulation with a known law of motion for the ~nterfaee is 
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that it is possible to determine the blood flow rate mb, especially the values characteris- 
tic of cryosurgery. 

We now consider the application to a case of practical importance, viz., where the 
working tip is a hemisphere of radius ro. If the law followed by the boundary of the frozen 
zone is known [I~ along with the thermophysical parameters 0, c, and %, then the following 
equation has to be solved to determine the temperature distribution and the heat flux in the 
frozen region: 

OT 1 0 OT 
. . . .  rYe(T) - -  (1) 
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s u b j e c t  to  t he  bounda ry  c o n d i t i o n s  

r = r o ,  T = T o ( t ) ,  

r = R (t), T = Tc = const, 

where ~ = 0,  1, 2 c o r r e s p o n d  to  p l a n a r ,  c y l i n d r i c a l ,  and s p h e r i c a l  c a s e s .  

The function To(t) is put as 

To (t) = 

T~ + (To - -  T~) t~ - -  t 0 < t ~ t0  
to  ' 

t - - to  t'o <~ t <~ to 
T~ - -  (T'~ - -  Th) t o - -  t; ' 

(2) 

(3) 

T ~ = c o n s t ,  t > t u  

on the basis of the observed temperature of the tip. 

By virtue of the condition R(0) = ro, the problem of (I) and (2) is of the type without 
initial conditions [9]; in particular, for To(t) ~ Tk, c, % -- const and R(t) ~ t*/= the prob- 
lem in the planar case (~ = 0) has a self-modeling solution [12]. In numerical analysis, the 
initial temperature distribution is defined for some sufficiently small time interval tA: 

t = t ~ ,  T = T i ( 0 ,  q < ~ r < R ( ~ ) .  (4) 

As a rule, Ti(r) is taken as a linear distribution, because preliminary calculations have 
shown that the exact choice of Ti(r) influences the solution only for the early period, viz., 
the first 5 or 6 time steps. For convenience, the following change of variable is also made: 
--x =(r -- ro)/(R(t) -- ro). Then (i) and (2) become 

OT 1 0 Or  OT { 2~,(T) } 1 (5) 
0--7- = (R - -  ro) z Ox ~" (T) ~ -4- ~ .PC (T) R -1- ro + x (R - -  t o ) .  R - -  r------~ ' pc q) 

x = O ,  T = To(0, 

x = I, T = T. = const, (6) 

and the region of integration is transformed to the rectangle{ta~t<~tr,~, 0~<x~l} ; Eq. (5) 
and boundary condition (6) are rendered dimensionless before proceeding further, with the 
characteristic time taken as t, = (copr~)/%o, where Co and %o are the characteristic values 
of the specific heat and thermal conductivity in c(T) = Co + gT and %(T) = ~o -- bT. 

The numerical solution was based on a net difference having a uniform step of hx in the 
coordinate but a variable time step of ht; the process is essentially nonstationary at the 
start, so a relatively small time step is used for that range. The process is only slightly 
nonstationary at later times, so a larger time step can be used, which saves computer run 
time. The exact step size was derived from trial calculations and was such that any further 
reduction in the step size did not alter the result by more than I%. 

The derivatives in the equations were approximated by an inexplicit scheme: 

OT T~ +l T': OT -v,~+ t 
- -  t - -  _ _  

Ot -- ht ' Ox 2hx 
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Fig. 1. Temperature T (~ in the frozen zone as a function 

! ! 

of radius r, m; ro = 6"10 -3 m; T k = 93~ T k = 88~ to = 8 

see; to = 60 sec; R(t) -- ro = 0.602"I0 -3 t ~ 0 _< t-- < 
79.53; R(t) -- ro = 1.69"10 -~ t ~ 79.53 _< t <- 393.38; 
R(t) -- ro = 3.017-10 -3 t ~176 393.38 <- t < 1800; l) t = 66 
see; 2) correspondingly 114; 3) 300; 4) 760; 5) 1800. 

Fig. 2. Temperature T (~ in the,frozen zone as a function 

of radius r, m; ro = 3.5"10 -3 m; T k = 93~ T k = 88~ t~ = 
I0 sec; to = 60 sec; R(t) -- ro = 0.687-i0 -~ t ~ 0 < t-- < 
69.36; R(t) -- ro = 1.714-10 -~ t ~176 69.36 < t < 789.39; 
R(t) -- ro = 3 072.10 -3 t ~ 789,39 <t < 1200; I) t = 78 
sec; 2) 250; 3) 800 sec; 4) 1200. 

n Here T i is the temperature in layer n at point i and Ti+z/2 = I/2(Ti• + T i) ; the difference 
equations for layer n + I were solved by fitting, and the nonlinearity arising from the tem- 
perature dependence of the specific heat and thermal conductivity was handled by iteration. 
The initial approximations for c(T) and X(T) were derived from the temperature for the pre- 
vious time layer. The temperature gradients are fairly high (up to 80~ so ~T/~r was 
represented in second-order form in determining q0: 

OT I -- 1.5T~ + 2Tk+l -- 0.5Th+2 
~r r=r. ~ t t t ~ ,  " 

No exact values were available for the thermophysical parameters of the frozen tissue, 
so the values appropriate for ice [I 3] were used. 

The measurements on R(t) for the entire range r0~r~Rmax, could be fitted to t = t=alsh[az 
+(R+a~)]in a comparatively small number of cases to give a maximum error of about 0.4-0.5 
rmn for the initial instant; however, the process is maximally nonstationary at this time, 
and the errors in determining qo were then more than 14%. For this reason, R(t) was put as 
R --ro = ft m for three successive time intervals, whose limits were defined automatically by 
least-squares fitting by computer. Then the maxinmm error of approximation for the initial 

instant was 0o 15 mm, which corresponded to the limiting experimental error. Test calcula- 
tions show that the errors in determining T(r), qo, and q arising from the discontinuity in R 
on going to the second segment were then, respectively, not more than 0.04, 0.25, and 2.6%. 
The calculations for the start of the third segment gave lower values for these quantities, 
because the nonstationary component is then very slight. 

Figures ][ and 2 show results on the temperature distributions along with measurements 
made by the method of [10] on dog leg muscle. 

In these experiments, the surface of the tissue was insulated from the environment by a 
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TABLE I. 
t ionary 

t=6,5 

1..~8,17 

t=29,85 

Frozen-Zone Temperatures Computed from the Quasista- 
.t 

Equation and by S1mulatlon 

r. I0 ~, ra 
r e a l  �9 
r q s ,  OK 

6,00 
122,91 
122,91 

6,21 
139,57 
138,68 

6,49 
162,2I 
159,35 

6,82 
187,20 
183,42 

7,D3 
202,42 
198,69 

7,73 
252, 57 
250,79 

7,89 
264, 23 
263, 33 

8,01 
273,0 
273,0 

r.10a, r n 
re~l , ~  
Tqs,  

6,00 
88 
88 

6,18[ 6,37 
103,61 119,02 
102,77 118,131 

6,55 1 7,01 
134,24!171,76 
132,52 t 168,91 

7,52 
212,57 
209,55 

8.03 
25.3,73 
252, 25 

8, 26 
273,0 
273,0 

r. I03, va 

real  , 
Tqs,  OK 

6 o. 1 o.,ot 
102,13 t 124,40[ t41,23 168,96 
101,74[ 123,72[ 140,69 167,77 

I 
8,55[ 9,52 

205,70 t 243,43 
t 

204,13 1 242,06 

10,32 
273, 0 
273,0 

TABLE 2. Comparison of qo Computed Precisely and from the Quasi- 
stationary Equation 

T~., ~ 
R.10 ~, m 

W qo eal'' . 10- 4, 
m a -  

W 
q:$. lO-', ii1' 

0 
273 
6,00 

0 

8,05 
93,02 
8,04 

42,68 

30,11 

15,88 
92,25 
9,07 

31,08 

30,54 

31,57 1 60,38 
90,74 1 88 
10,6I { 12,76 

24,06 t 20, t4 

12t ,08i300,58 
as 8 8 i  

15,251 18,81 
I 
l 

17,72 15,73] 

17,58 15,66 
i 

96,241 I528 
88 I 88 

23.301 25,84 

14,351 13,83 

t4,371 13,85 

t800 
88 

26,70 

13,70 

13,76 

50-ram layer of foam polystyrene, which was sufficient to give the system spherical symmetry. 

The illustrations show that the maximum discrepancy in the corresponding temperatures 
was -+4-5~ and may arise in particular from inaccuracy in the thermophysical parameters used 
in the calculations; similar calculations with X = const, as in [2,7], gave deviations of up 
to 20~ from the measurements and therefore show that T dependence on ~ must be incorporated 
in order to obtain accurate results. 

It is of particular interest to compare the exact numerical solution with similar re- 
sults obtained for the quasistationary case, where a substantially simplified analytical 
model is employed. Tables I and 2 compare the exact and quasistationary solutions for the 
temperature distributions and heat flux qo. Such comparisons were made for the comparatively 
wide ranges 88~ < T k < 170~ 3.5 mm <-ro~6 mm and showed that the maximum discrepancies in 
the temperatures and heat fluxes occur for times t less than I0-15 sec and were, respectively, 
not more than 2 and 6%. These errors are quite acceptable for practical cryosurgery calcula- 
tions. 

If R(t) is known from experiment, the following equation can be solved [4] to determine 
the blood flow rate in the tissue: 

r a---L-r = 1 , w  mbcb (To - -  r)  + (7) 
at r* Or ar 

s u b j e c t  to  t h e  b o u n d a r y  c o n d i t i o n s  
aT 

r = R (t),  T = Tc = const ,  ~,' . = q (t), 
ar (8 )  

r = oo, T = Ta, 

where q(t) is derived from the above solution for the frozen zone. For qualitative purposes, 
it is possible to assume [11] a quasistationary temperature distribution, with X' = const and 
S m = 0 []]], which then gives 

~ ' [  q(t) 1 ]  2 (9) 
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Fig. 3. Distribution of mb, kg/m3-sec, 
as a function of time t (sec) for local 
freezing of dog leg muscle: l) ro = 
3.5-10 -3 m, T k = 88~ 2) correspon- 
dingly 6-10 -3 m, T k = 88~ 3) 6.10 -3 m, 
T k = 173~ 

Figure 3 shows results from (9), which indicate that m b is substantially dependent on 
T k, ro, and t, which indirectly confirms that m b is dependent on the tissue temperature [8]. 
The quantitative parameters characteristic of the local blood flow can be refined by numeri- 
cal solution of (7) and (8), which provides a basis for more refined prediction by traditional 
techniques [2, 7]. 

This simulation method thus employs a single-phase heat-conduction equation with a 
mobile boundary, and it provides satisfactory accuracy in defining the major characteristics 
of the tissue while requiring much less input data than do traditional methods, while also 
demonstrating that the quasistationary solution is applicable for the frozen zone throughout 
the relevant range. Also, the method can be used to define the blood flow rate. In such a 
case, the measurements must include ones on the growth of the frozen zone, e.g., as deter- 
mined at the surface of the tissue. 

NOTATION 

Sb, heat derived from blood flow; Sm, metabolic heat production; ro, radius of tip; 0, 
c, %, density, specific heat, and thermal conductivity of frozen tissue; T, current tempera- 

. . ~ I 

ture; t, time; r, instantaneous coordlnate; R, radlus of frozen zone; To, Tk, Tk, tempera- 
tures at tip~ Tc, crystallization temperature; to, time needed for tip temperature to fall 
from T c to Tk; x, transformed coordinate; hx, ht, coordinate and time steps; i, n, coordinate 
node and time range, respectively; al, a2, a3, coefficients; sh, hyperbolic sine; qo, q, heat- 
flux densities toward the immobile boundary (r0) and from the mobile boundary (R); f, g, b, 
coefficients of proportionality; m, exponent; mb, c b, T a, blood flow rate, specific heat, 
and temperature; p', c', %', density, specific heat, and thermal conductivity of unfrozen 
tissue; l, latent heat of crystallization. 
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